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Who is this guy?
Eric Cobb

- Started in IT in 1999 as a "webmaster“

- Developer for 14 years

- Microsoft Certified Solutions Expert (MCSE)

- Data Platform

- Data Management and Analytics

- Now a full time DBA

Blog: http://www.sqlnuggets.com

Blog Twitter: @sqlnugg

Personal Twitter: @cfgears

http://www.sqlnuggets.com/


What are we going to learn?

• How SQL Server stores and retrieves data

• How your database design can impact resources and performance

• Design tips to incorporate into your database development

• Common T-SQL mistakes and things to avoid

• Primarily focusing on OLTP databases



A PEEK UNDER THE HOOD OF SQL SERVER
A BRIEF OVERVIEW OF HOW SQL SERVER STORES AND RETRIEVES DATA
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A Peek Under The Hood
Storing Data in Pages

How is the data stored in a Page?

Unordered (Heap)
• Query optimizer reads all the rows in the table (table scan), to find the rows that meet the criteria of a 

query
• A table scan generates many disk I/O operations and can be resource intensive
• Heaps should generally be avoided, although can be useful when inserting large amounts of data in 

ETL/Bulk processes  

Ordered (Clustered Index)
• Tells SQL Server how to physically sort the records on disk
• The most important index you can apply to a table
• Data pages are ordered, for faster data retrieval 
• Query optimizer searches the index key columns and finds the location of the rows needed by the query

• Searching the index is much faster than scanning the entire table
• There is only ever 1 clustered index on a table



A Peek Under The Hood
Storing Data in Pages

How do I create Clustered Indexes?

Primary Key = Clustered Index (usually)
• SQL Server automatically creates a clustered index on your Primary Key column if a clustered index does 

not already exist on the table

• If you do not want the Primary Key to be your Clustered Index, you can create your Clustered Index on a 
different column

Clustered Index (Primary Key) Tips:
• Use a naturally occurring incremental value

• Keep as small and narrow as possible (single columns are preferred)

• Avoid using character data types for a Clustered Index



A Peek Under The Hood
Storing Data in Pages
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A Peek Under The Hood
Page Splits

How can we avoid Page Splits?

You can’t avoid them, but you can minimize them with good table designs
• Choose a good Clustered Index (Primary Key) for your table

• Should be unique, narrow, static, and incremental

• Good Clustered Index examples:

• A numeric identity column (smallint, int, bigint)

• A composite key of date and identity – in that order (date, identity) 

• A pseudo sequential GUID (using the NEWSEQUENTIALID() function in SQL Server)

• Not recommended, but the best you can do if you absolutely have to use a GUID

• Clustered Indexes to avoid:

• Unique Identifier (GUID) generate from an application or with SQL Server’s NEWID() function

• Character columns (CHAR, VARCHAR, NVARCHAR, etc…)

• Combination of multiple character columns (LastName, FirstName, MiddlieInitial)

• Columns that undergo frequent changes



A Peek Under The Hood
Overflow Pages



A Peek Under The Hood
Overflow Pages



A Peek Under The Hood
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BUILDING BETTER TABLES
DESIGNING TABLES WITH EFFICIENCY IN MIND



Building Better Tables
Using The Right Data Types

Data Types Are Important!

Choose your table column data types wisely
• They can affect the performance of your database as it grows

Know your data, use the appropriate data type for the data you are storing
• The more accurate your data type is, the more efficiently SQL Server can handle your data. 

Use the smallest data type possible (within reason)
• The smaller the column, the less data you have to store and retrieve, which leads to faster reads and writes
• The longest city name in the U.S. is Rancho Santa Margarita, California; it’s 22 chars, don’t use VARCHAR(MAX)
• The true name of Bangkok, Thailand is: Krungthepmahanakhon Amonrattanakosin Mahintharayutthaya

Mahadilokphop Noppharatratchathaniburirom Udomratchaniwetmahasathan Amonphimanawatansathit
Sakkathattiyawitsanukamprasit.  (176 chars)



Building Better Tables
Using The Right Data Types

CHAR vs VARCHAR 
• CHAR(n): Fixed-length string data, and the storage size is n bytes.
• VARCHAR(n): Variable-length string data, the storage size is the actual length of the data entered + 2 

bytes.
• If you know the length of the string will always be the same, use CHAR to avoid the additional 2 bytes 

added to every VARCHAR record

NCHAR vs NVARCHAR 
• If you have databases that support multiple languages, consider using the Unicode NCHAR or 

NVARCHAR data types to minimize character conversion issues
• Carefully evaluate whether you really need NCHAR or NVARCHAR 
• NCHAR(n): Fixed-length Unicode string data, and the storage size is two times n bytes
• NVARCHAR(n): Variable-length Unicode string data, and the storage size, in bytes, is two times the 

actual length of data entered + 2 bytes



Building Better Tables
Using The Right Data Types

DECLARE

@var1 CHAR(10) = 'abc',

@var2 NCHAR(10) = 'abc',

@var3 VARCHAR(10) = 'abc',

@var4 NVARCHAR(10) = 'abc'

SELECT

DATALENGTH(@var1) AS [char],

DATALENGTH(@var2) AS [nchar],

DATALENGTH(@var3) AS [varchar],

DATALENGTH(@var4) AS [nvarchar]



Building Better Tables
Using The Right Data Types

Numeric Data Types

Choose the appropriate Data Type for the range of numbers you will be storing

Data Type Range Storage

BIGINT -9,223,372,036,854,775,808 to 
9,223,372,036,854,775,807 (Quintillion)

8 Bytes

INT -2,147,483,648 to 2,147,483,647 (Billion) 4 Bytes

SMALLINT -32,768 to 32,767 2 Bytes

TINYINT 0 to 255 1 Byte
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Using The Right Data Types

Date and Time Data Types

Choose the appropriate Data Type for the range of dates you will be storing

Data Type Range Storage

TIME 00:00:00.0000000 through 23:59:59.9999999 3 - 5 Bytes

DATE 0001-01-01 through 9999-12-31 3 Bytes

SMALLDATETIME 1900-01-01 through 2079-06-06 4 Bytes

DATETIME 1753-01-01 through 9999-12-31 8 Bytes



Building Better Tables
Using The Right Data Types

Why does this matter?

Performance
• Smaller data sets = faster queries
• Optimized data pages = optimized resource usage (Remember the Buffer Pool?)

Scalability
• Helps you build better, more scalable applications

• Don’t think in terms of 1 row of data, think about millions
• Scalable applications do not happen by accident

Time spent on proper database design is well worth it
• Minor changes can have a major impact
• It can take more effort to rebuild an existing application than it does to originally design one correctly



Building Better Tables
Using The Right Data Types

Why does this matter?

* Taken from Kimberly Tripp’s Pluralsight Course:  
SQL Server: Why Physical Database Design Matters

http://www.pluralsight.com/courses/sqlserver-why-physical-db-design-matters

http://www.pluralsight.com/courses/sqlserver-why-physical-db-design-matters


T-SQL TIPS
T-SQL HABITS THAT CAN CAUSE PROBLEMS



T-SQL Tips
NOLOCK

Allows a Dirty Read
• Does not issue locks to prevent other transactions from modifying data being read
• Allows other transactions to modify the data while you’re trying to read it
• Data returned to the SELECT statement may or may not actually exist in the database, and in some cases it may 

cause a query to return the same row multiple times or even skip rows

When should I use NOLOCK?
• If your query doesn’t necessarily need to return precise figures, and can tolerate some inconsistencies
• If you are querying data that does not get modified often

But NOLOCK makes my query faster!
• It makes your query faster because it is ignoring the safeguards put in place to ensure that your query is returning 

accurate data

If you need 100% accurate results from your query, do not use NOLOCK



T-SQL Tips
Stored Procedures

Do not name your stored procedures with the “sp_” prefix!
• This is reserved for system stored procedures

• SQL Server first checks the Master database for these procedures

Use SET NOCOUNT
• Can improve stored procedure performance

• Turns off the messages that SQL Server sends back to the client after each T-SQL statement is executed



T-SQL Tips
Query Performance Killers

• Try not to use ORDER BY or DISTINCT in your queries, as it adds a lot of extra overhead. It is 
more efficient to sort/filter the data in your application

• Format Dates in your application instead of in your SELECT statements
• Avoid Cursors and Loops in your T-SQL statements, as it forces row-by-row operations
• Using Functions in WHERE clauses and JOINS should be avoided
• Do Not Use SELECT *

• Can cause the optimizer to ignore indexes on the table, forcing a full table scan
• The more fields you return, the worse your performance is going to be (especially when ordering)

• Avoid Data Type Mismatches (aka Implicit Conversions)
• Variables used in WHERE clauses should match the data type of the columns they’re compared with
• Columns used in JOIN conditions should have matching data types



Thank you!


