
Building Better
SQL Server Databases

Who is this guy?

Eric Cobb
• Started in IT in 1999 as a "webmaster“
• Developer for 14 years
• Microsoft Certified Solutions Expert (MCSE)

• Data Platform
• Data Management and Analytics

Blog: http://www.sqlnuggets.com

Twitter: @sqlnugg

@cfgears

http://www.sqlnuggets.com/

A PEEK UNDER THE HOOD OF SQL SERVER
A BRIEF OVERVIEW OF HOW SQL SERVER STORES AND RETRIEVES DATA

A Peek Under The Hood

A Peek Under The Hood

A Peek Under The Hood

A Peek Under The Hood

A Peek Under The Hood

A Peek Under The Hood

A Peek Under The Hood
Storing Data in Pages

A Peek Under The Hood
Storing Data in Pages

A Peek Under The Hood
Storing Data in Pages

How is the data stored in a Page?
• Unordered (Heap)

• Query optimizer reads all the rows in the table (table scan), to find the rows that meet
the criteria of a query

• A table scan generates many disk I/O operations and can be resource intensive
• Heaps should generally be avoided, although can be useful when inserting large amounts

of data in ETL/Bulk processes

• Ordered (Clustered Index)
• Tells SQL Server how to physically sort the records on disk
• The most important index you can apply to a table
• Data pages are ordered, for faster data retrieval
• There is only ever 1 clustered index on a table

A Peek Under The Hood
Storing Data in Pages

How do I create Clustered Indexes?
• Primary Key = Clustered Index (usually)

• SQL Server automatically creates a clustered index on your Primary Key column if a
clustered index does not already exist on the table

• If you do not want the Primary Key to be your Clustered Index, you can create your
Clustered Index on a different column

• Clustered Index (Primary Key) Tips:
• Use a naturally occurring incremental value
• Keep as small and narrow as possible (single columns are preferred)
• Avoid using character data types for a Clustered Index

A Peek Under The Hood
Storing Data in Pages

A Peek Under The Hood
Page Splits

A Peek Under The Hood
Page Splits

A Peek Under The Hood
Page Splits

A Peek Under The Hood
Page Splits

A Peek Under The Hood
Page Splits

A Peek Under The Hood
Page Splits

A Peek Under The Hood
Page Splits

How can we avoid Page Splits?
• You can’t avoid them, but you can minimize them with good table designs

• Choose a good Clustered Index (Primary Key) for your table
• Should be unique, narrow, static, and incremental
• Good Clustered Index examples:

• A numeric IDENTITY column (smallint, int, bigint)

• A composite key of date and identity – in that order (date, identity)

• A pseudo sequential GUID (using the NEWSEQUENTIALID() function in SQL Server)

• Not recommended, but the best you can do if you absolutely have to use a GUID

• Clustered Indexes to avoid:
• Unique Identifier (GUID) generated from an application or with SQL Server’s NEWID() function

• Character columns (CHAR, VARCHAR, NVARCHAR, etc…)

• Combination of multiple character columns (LastName, FirstName, MiddlieInitial)

• Columns that undergo frequent changes

BUILDING BETTER TABLES
DESIGNING TABLES WITH EFFECIENCY IN MIND

Building Better Tables
Using The Right Data Types

Data Types Are Important!

• Choose your table column data types wisely
• They can affect the performance of your database as it grows

• Know your data, use the appropriate data type for the data you are storing
• The more accurate your data type is, the more efficiently SQL Server can handle your data.

• Use the smallest data type possible (within reason)
• The smaller the column, the less data you have to store and retrieve, which leads to faster queries
• The longest city name in the U.S. is Rancho Santa Margarita, California; it’s 22 chars, don’t use

VARCHAR(MAX)
• The true name of Bangkok, Thailand is: Krungthepmahanakhon Amonrattanakosin Mahintharayutthaya

Mahadilokphop Noppharatratchathaniburirom Udomratchaniwetmahasathan
Amonphimanawatansathit Sakkathattiyawitsanukamprasit. (176 chars)

Building Better Tables
Using The Right Data Types

CHAR vs VARCHAR
• CHAR(n): Fixed-length string data, and the storage size is n bytes.
• VARCHAR(n): Variable-length string data, the storage size is the actual length of the data entered +

2 bytes.
• If you know the length of the string will always be the same, use CHAR to avoid the additional 2

bytes added to every VARCHAR record

NCHAR vs NVARCHAR
• If you have databases that support multiple languages, consider using the Unicode NCHAR or

NVARCHAR data types to minimize character conversion issues
• Carefully evaluate whether you really need NCHAR or NVARCHAR
• NCHAR(n): Fixed-length Unicode string data, and the storage size is two times n bytes
• NVARCHAR(n): Variable-length Unicode string data, and the storage size, in bytes, is two times the

actual length of data entered + 2 bytes

Building Better Tables
Using The Right Data Types

DECLARE

@var1 CHAR(10) = 'abc',

@var2 NCHAR(10) = 'abc',

@var3 VARCHAR(10) = 'abc',

@var4 NVARCHAR(10) = 'abc'

SELECT

DATALENGTH(@var1) AS [char],

DATALENGTH(@var2) AS [nchar],

DATALENGTH(@var3) AS [varchar],

DATALENGTH(@var4) AS [nvarchar]

Building Better Tables
Using The Right Data Types

Numeric Data Types

• Choose the appropriate Data Type for the range of numbers you will be storing

Data Type Range Storage

BIGINT -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 (Quintillion)

8 Bytes

INT -2,147,483,648 to 2,147,483,647 (Billion) 4 Bytes

SMALLINT -32,768 to 32,767 2 Bytes

TINYINT 0 to 255 1 Byte

Building Better Tables
Using The Right Data Types

Date and Time Data Types

• Choose the appropriate Data Type for the range of dates you will be storing.

Data Type Range Storage

TIME 00:00:00.0000000 through 23:59:59.9999999 3 - 5 Bytes

DATE 0001-01-01 through 9999-12-31 3 Bytes

SMALLDATETIME 1900-01-01 through 2079-06-06 4 Bytes

DATETIME 1753-01-01 through 9999-12-31 8 Bytes

Building Better Tables
Using The Right Data Types

Why does this matter?

Performance
• Smaller data sets = faster queries
• Optimized data pages = optimized resource usage (Remember the Buffer Pool?)

• Saving 32 bytes in 1 table saved 30.5GB when the table reached 1 Billion rows*
• * Taken from Kimberly Tripp’s Pluralsight Course: SQL Server: Why Physical Database Design Matters

Scalability
• Helps you build better, more scalable applications

• Don’t think in terms of 1 row of data, think about millions
• Scalable applications do not happen by accident

Time spent on proper database design is well worth it
• Minor changes can have a major impact

• It can take more effort to rebuild an existing application than it does to originally design one correctly

http://www.pluralsight.com/courses/sqlserver-why-physical-db-design-matters

T-SQL TIPS
A LOOK AT SOME T-SQL HABITS THAT CAN HURT QUERY PERFORMANCE

T-SQL Tips

NOLOCK

Allows a Dirty Read
• Does not issue locks to prevent other transactions from modifying data being read
• Allows other transactions to modify the data while you’re trying to read it
• Data returned to the SELECT statement may or may not actually exist in the database, and in some cases it

may cause a query to return the same row multiple times or even skip rows

But NOLOCK makes my query faster!
• It makes your query faster because it is ignoring the safeguards put in place to ensure that your query is

returning accurate data

When should I use NOLOCK?
• If your query doesn’t necessarily need to return precise figures, and can tolerate some inconsistencies
• If you are querying data that does not get modified often

If you need 100% accurate results from your query, do not use NOLOCK

T-SQL Tips

Stored Procedures
Do not name your stored procedures with the “sp_” prefix!

• This is reserved for system stored procedures

• SQL Server first checks the Master database for these procedures

Use SET NOCOUNT
• Can improve stored procedure performance

• Turns off the messages that SQL Server sends
back to the client after each T-SQL statement
is executed

T-SQL Tips

Why Is My Query Slow?

• Using ORDER BY or DISTINCT
• Could be forcing SQL Server to write your results to TempDB (especially with large result sets)
• Try to sort/filter the data in your application instead

• Using Scalar Functions in SELECT statements, WHERE clauses, or JOINS
• Forces row-by-row operations; Forces single-threaded execution plan

• Cursors and Loops in your T-SQL statements
• Forces row-by-row operations

• Use of SELECT *
• Can cause the optimizer to ignore indexes on the table, forcing a full table scan
• Returning unnecessary columns in large result sets takes more resources

• Data Type Mismatches (aka Implicit Conversions)
• Variables used in WHERE clauses should match the data type of the columns they’re compared with
• Columns used in JOIN conditions should have matching data types

Questions?

Thank You!

Eric Cobb

http://www.sqlnuggets.com

